
Treating Sets as Types in a

Proof Assistant for Ordinary Mathematics

Sebastian Reichelt

September 4, 2010

Abstract

I present a proof assistant with a novel graphical user interface, which
not only renders user input in a familiar mathematical style, but com-
pletely abandons textual input in favor of a menu-driven approach. In
order to fill each menu precisely with the set of intuitively meaningful
choices, the software employs a custom formal system which appears set-
theoretic from the user’s point of view but is based on types internally.

1 Introduction

The user interaction of all major proof assistants, whether declarative or pro-
cedural, is inherently text-based and focused on input. After mentally formal-
izing definitions and theorems in the language of the underlying formal system,
the user needs to encode the result into a program-specific syntax. Efforts to
increase user-friendliness have thus dealt primarily with streamlining this en-
coding, by introducing syntactical features such as symbol overloading [1] and
automatically inferred arguments [10], by adding more sophisticated automa-
tion [23], or simply by making the syntax more readable [19]. While this strategy
has led to notable successes in hardware and software verification [9, 13], the
formalization of ordinary mathematics has not progressed equally well yet [21].

Two of the most frequently cited reasons are the high overhead of formaliza-
tion (“de Bruijn factor”), especially in terms of time, and a lack of participation
by the mathematical community (attributed in part to said overhead and in
part to the remoteness of proof assistants from mathematical practice) [21]. I
believe that further syntax or automation improvements cannot significantly re-
duce the time overhead or make the input resemble ordinary mathematics more
closely. Instead, I would like to propose an entirely different proof assistant
design, covering both the software and the formal system it is based on — and
present a prototype implementation.

The main idea is to seize all opportunities for interaction and feedback that
arise in a graphical user interface (GUI). While current proof assistant GUIs are
essentially wrappers around text-based interfaces with (very valuable) additional
features [1, 2], an all-encompassing GUI can let the user operate directly on the

1



Figure 1: Inserting a formula within a new theorem.

mathematical data structures instead of parsing text. Thus, no keyboard input
is required except for names; everything else can be selected from context-
specific menus (see figure 1). As a result, the focus automatically shifts from
input to output : The struggle for the most efficient syntax is superseded by a
quest for the most intuitive menus and the most efficient navigation and search
facilities. For example, if the user can specify freely how a definition should
be rendered, and the custom rendering is used even in menus, finding the right
definition can become a matter of seconds.

As a consequence of this design, user-friendliness depends unusually strongly
on how well the data structures and the underlying formal system match the
user’s expectations. For a proof assistant intended for all areas of mathematics,
two seemingly competing requirements emerge:

First, to achieve the most “mathematical” rendering, the internal data rep-
resentation must itself resemble mathematical practice as closely as possible.
From this perspective, a first-order axiomatic set theory like Zermelo-Fraenkel
would be the obvious choice, given today’s widespread use of set-theoretical
principles and notation. But second, there is suddenly a substantial benefit
in restricting the possible choices to those that are meaningful in a particular
situation. De Bruijn once remarked that ZF lets us “ask whether the union of
the cosine function and the number e contains a finite geometry” [5, 7]. Unfor-
tunately, no set theory rejects all such nonsense questions.

Instead, that task falls squarely within the domain of type theory [11]. In-
deed, many proof assistants are based on some variant of type theory, though
mostly for different reasons such as its connection to computer science. Alas,
type theory carries an even greater potential to confuse users with an ordinary
mathematical background than meaningless choices in menus could possibly ac-
quire, simply for not being like set theory. The most obvious show-stopper is the
non-trivial correspondence between subsets in set theory and functions yielding
user-defined Booleans or Curry-Howard-style propositions in type theory.

2



To meet both criteria at the same time, I have developed a formal system
that merely interprets ordinary mathematics in terms of types. Although this
idea is hardly new [5, 14] and arguably dates back to the beginnings of type
theory, the particular formal system appears to be unique in satisfying all of the
following properties:

• There is a simple mechanical translation from the “internal” language of
the system to common set-theoretical notation.

• Almost the entire body of existing mathematics can be formalized in the
system, including general reasoning about sets. In other words, the formal
system qualifies as a set theory, for a sufficiently broad definition of “set
theory.”

• Given a rigorously but informally formulated definition or theorem, the
proper formalization is immediately obvious. No obscure “coding” is re-
quired.

• Validity in the formal system coincides extremely closely with intuitive
meaningfulness. The rules of the system prevent all constructs that would
be considered “type errors.” In other words, the formal system qualifies
as a type theory, for a sufficiently broad definition of “type theory.”

The rest of this paper is organized as follows: In section 2, I discuss the relation-
ship of the presented work to some existing proof assistants and formal systems.
Section 3 contains a description of the formal system along with its connection
to the proof assistant, with a focus on the type mechanism. Section 4 reflects on
some surprising properties that emerge during the development of the system,
as well as current weak spots that call for extensions.

2 Related Work

Proof assistants. Among existing proof assistants, Mizar [18] is probably
closest in spirit to the software presented in this paper. Like Mizar, my proof
assistant is designed for mathematics rather than computer science (although
using it for program verification is certainly possible). Especially, the Mizar
syntax and proof style are intended to resemble ordinary mathematical notation,
which is one of my primary goals as well. The biggest difference is that like all
major proof assistants, Mizar takes text as input.

Although Mizar is based on ZF-style set theory, it also features a type sys-
tem [20]. Its types serve several purposes related to user-friendliness, such as
symbol overloading, guarded quantification, and automatic inferences. Never-
theless, since they are optional, such types would be insufficient for the purpose
of restricting choices in a GUI.

Proofs in Mizar are declarative and therefore comparatively readable, which
has inspired declarative add-ons to other proof assistants such as HOL [8],
Coq [4], and Isabelle [17]. Most other systems natively use a procedural style,

3



Figure 2: Inserting a proof step.

which has the advantage of smaller proof sizes, immediate feedback, and bet-
ter programmability [6, 8]. There also exist efforts to merge both styles [22],
since from a user’s point of view, the proof style constitutes the main difference
between programs.

In a GUI, the dichotomy between declarative and procedural input can be
avoided. At any point in a proof, my program presents a list of possible next
steps, which roughly correspond to the tactics of procedural proof assistants
(see figure 2). A similar input method is found in Papuq [16], an IDE for the
Coq proof assistant. The crucial difference is that every step selected by the
user is inserted into the proof in a declarative style (see figure 3). Thus, the user
gets immediate feedback (and cannot even select anything that is not a correct
inference), while at the same time the result is a human-readable proof.

Formal systems. Although the differences in input method and proof style
are the most visible, the essence of my contribution lies in the formal system
that makes all advances possible in the first place. To be able to compare it
with established systems, it is necessary to highlight a crucial divergence in the
approach taken to arrive at its rules. The result of this approach is a formal sys-
tem based neither on (whatever-order) predicate logic nor on (typed/untyped)
lambda calculus.

All formal systems that serve as a foundation of mathematics can be regarded
as an abstraction of mathematical practice. Typically, one strives to eliminate
as many individual concepts as possible while keeping the same strength, by
translating the removed concepts into the remaining ones. For example, the
concept of ‘definition’ is usually understood to lie outside of the scope of a
formal system, as a definition can be eliminated by substituting its contents at

4



Figure 3: The proof step of figure 2 has been inserted.

all places where it is instantiated (though formal systems with ‘definitions’ exist,
e.g. DZFC and PST [12], as well as the Calculus of Inductive Constructions [15]).
Similarly, when working in a set theory, notions such as ‘function’ or ‘number’
(that could be considered primitive in informal mathematics) are defined in
terms of sets. Even the concept of ‘set’ becomes irrelevant if all objects of
discourse are in fact sets, as is the case in ZF.

In the introduction, I argued that my formal system must be sufficiently
rich to be able to render its contents in mathematical notation, and to offer
a selection between meaningful alternatives in every situation. Therefore, it
contains a number of concepts that are normally abstracted away. These include
‘definition’ and ’set’ (as a primitive notion, not described by axioms) as well as
some new concepts. The primary motivation for this design is that it enables
another central concept, that of a ‘type,’ to be hidden from the user in the proof
assistant.

Nevertheless, functions, relations, numbers, groups, vector spaces, cate-
gories, etc. can all be defined on top of the formal system as usual. (That
is, in the proof assistant, they are part of the library.) However, the construc-
tion of such objects requires far less arbitrary coding than in pure set theories,
due to a ‘construction’ concept that resembles inductive type declarations in
type-theoretic proof assistants.

3 The Formal System

In this paper, I present both a proof assistant and its underlying formal system,
with an emphasis on the latter. Both are strongly related, perhaps unusually so:
While the standard idea is that a proof assistant is based on a formal system, in
this case the formal system can alternatively be regarded as an abstraction of
the data structures of the program. Since these data structures are also clearly
represented in the graphical user interface, I will frequently use screenshots of
the proof assistant as a more concrete exposition of abstract concepts.

5



Figure 4: Inserting a second parameter (after first parameter x).

The user-defined mathematical content of the proof assistant is organized in
a single ‘library,’ which is essentially a large hierarchical data structure without
any dependencies on the rest of the program. A library consists of an unordered
list of ‘definitions’ and ‘theorems.’ As indicated, these three concepts carry
over verbatim to the formal system, which distinguishes this system from most
others.

Definitions and theorems start with a list of ‘parameters.’ Intuitively, these
parameters play a similar role as function parameters in type-theoretic proof
assistants and programming languages, and indeed, they

• introduce variables that are used in the body of the definition or theorem,

• are substituted by ‘arguments’ whenever the definition/theorem is used,
and

• set the stage for the type mechanism.

It is important, however, not to think of definitions with parameters as functions
in the mathematical sense, as the latter are defined in the library in the usual
manner as subsets of Cartesian products. In this regard, my system differs
strongly from existing type theories, which tend to have built-in function types.

Figure 4 shows a screenshot of a definition with one parameter and a menu
for adding a second parameter. The menu contents depict the four basic kinds
of parameters that exist:

• The first is called an ‘element parameter’ and rendered as “Let x ∈ . . .” To
avoid any confusion, I would like to stress that the ‘∈’ symbol is considered
part of the parameter and thus not identical to the same symbol in a
formula “x ∈ . . .” (Since symbols are never entered but merely rendered,
overloading them is entirely unproblematic as long as it cannot cause any
confusion.)

• The second is called a ‘subset parameter’ and rendered as “Let S ⊆ . . .”

6



Figure 5: An implicit definition with multiple equivalent alternatives.

• The third is called an ‘arbitrary set parameter’ and rendered as “Let S be
a set.”

• The fourth is called a ‘constraint parameter’ and rendered as “Assume
. . .” or ”such that . . .”

The reason for introducing these specific kinds of parameters is closely related
to the type system and will become apparent in the next section. However, the
existence of ‘element,’ ‘subset,’ and ‘arbitrary set’ parameters already highlights
a special property of the formal system: the role of sets as a concept, rather
than as objects. Not only is set-related terminology built into the system at
a central place where one might not expect it (in particular, the introduction
of variables), it also serves to classify variables in a way that would not be
possible if sets were treated as objects: We can call each variable introduced by
an element parameter an ‘element variable,’ and each variable introduced by a
subset or arbitrary set parameter a ‘set variable.’ This distinction becomes a
key ingredient of the “sets as types” paradigm.

What follows after the parameters depends on whether one is stating a the-
orem or a definition, and in the latter case, what kind of definition. The details
are somewhat complex and arbitrary; consider for instance implicit definitions
(see figure 5). Therefore, I will confine myself to the most important aspects of
formulae and terms:

• The distinction between element variables and set variables carries over
to terms. (Power sets, which intuitively seem to break this scheme, can in
fact be handled easily using an additional “indirection” – see section 3.2.)

• Formulae of the form “x = y,” “x ∈ S,” and “S ⊆ T” are considered
primitive. Here, x and y denote element terms, whereas S and T denote
set terms.

• Quantifiers are followed by parameters matching those described above,

7



instead of just variable names. (Of course, words like “let” are omitted
here – see figure 5.)

• There is a primitive set term of the form “{x ∈ S : . . .}.” The “x ∈ S”
part is actually an element parameter.

• Since definitions are part of the language, so is their instantiation. An
element term must be provided as an ‘argument’ for each element param-
eter, and a set term for each subset or arbitrary set parameter. Moreover,
all constraints must be provably satisfied. Depending on the kind of defi-
nition, the result is an element or set term, or a formula.

This rough overview should suffice to convey at least a vague intuition about
what can and cannot be said in the language of the system. For example, a
formula like “x ∈ x” is never syntactically valid because x would have to be
an element variable and a set variable at the same time. Still, so far, nothing
would prevent one from asking e.g. whether a given natural number is in the
set of finite directed graphs. This is where types enter the scene.

3.1 Types

To explain the idea behind the type system, I will first state its rules in an
informal fashion.

• The formula “x = y,” introduced as primitive above for element terms x
and y, is valid if and only if there exists a set term T such that both x ∈ T
and y ∈ T can be determined to hold on a purely syntactical basis.

• Similarly, the formula “x ∈ S” is valid if and only if x can be determined
to be a member of some superset of S.

• Finally, the formula “S ⊆ T” is valid if and only if S and T can be
determined to have a common superset.

The above rules describe the essence of the “sets as types” paradigm: The
language of the system is inherently set-theoretic; in particular, the ∈ and ⊆
symbols are used just like in ordinary mathematics. However, they have a
radically different status compared to their role in axiomatic set theory; they
are both governed by and play a part in the type rules.

It is easy to see that the rules, when made sufficiently precise, ensure that
all such formulae are meaningful. It certainly makes sense to ask whether two
members of a single given set are equal, or whether a certain member of a set
is also in one of its subsets. To support the reverse claim – that every ordinary
mathematical statement can be phrased in accordance with the given rules – I
can only point to my proof assistant and its present library.

To make the informal rules precise, each element or set term is recursively
assigned a ‘type.’

8



Figure 6: Type rules prohibit the use of z.

• The type of an element term x referring to a parameter introduced as “let
x ∈ T” is defined to be the same as the type of T. (There is no need to
introduce an “element of T” type because element terms and set terms
are disjoint.)

• The type of a set term S referring to a parameter introduced as “let
S ⊆ T” is also defined to be the same as the type of T.

• The type of a set term of the form “{x ∈ T : . . .}” is, again, defined to be
the same as the type of T.

• The type of a term that references a definition is determined by the con-
tents of the definition, with all occurrences of variables substituted by
their arguments.

This definition reduces every type to that of a set term S referring to an ‘ar-
bitrary set’ parameter introduced as “let S be a set.” Any two such types are
considered distinct, so formally, the type of such an S is defined to be S itself.
Then, the informal principle can be rephrased as:

Formulae of the form “x = y,” “x ∈ S,” and “S ⊆ T” are valid if
and only if x, y, S, and T have the same type.

Since the type of a term can be determined algorithmically, there is no need
to even mention the word ‘type’ in the proof assistant. Instead, types work in
the background to eliminate meaningless choices. For example, in figure 6, the
variable z is simply omitted from the menu. More usefully, in figure 7, the most-
recently-used list is filled with precisely the items that (can) yield functions, and
in the case of the identity function, the software infers automatically that it must
be the identity on X, the domain of f. (For the same reason, the variable f
cannot be inserted at the given position.)

The concepts and primitives described thus far are not sufficient to deal with
concrete objects (like those seen in figure 7), but do permit the statement of

9



Figure 7: Appropriately filled most-recently-used list, and automatic type in-
ference (X). (Also note how the software can render every symbol according to
a user-defined notation and layout.)

some abstract definitions and theorems. One example would be the intersection
or union of two sets S and T that have the same type:

Let U be a set, S, T ⊆ U. We define:

S ∪U T := {x ∈ U : x ∈ S ∨ x ∈ T}

The occurrence of an arbitrary set U in “S ∪U T” would obviously be irritating,
but since every valid argument will provably yield the same result, it can be
inferred automatically and therefore omitted (see figure 8). However, U needs
to be part of the definition to ensure that S and T have the same type.

The last major missing piece is the introduction of concrete objects to get
the system off the ground.

3.2 Constructions

The usual approach for the construction of sets and objects is to postulate ax-
ioms that guarantee their existence and uniqueness. However, since axioms vary
from system to system, they are seldom referred to in practice. Thus, a more
high-level mechanism for set construction can be beneficial from a usability
standpoint. There is also the technical issue that “the unique set S satisfy-
ing property P (S)” is not a valid term, as two arbitrary sets are considered
uncomparable.

Therefore, the notion of ‘axioms’ is abandoned in favor of set construction
rules that directly yield the sets occurring in practice, such as Cartesian prod-
ucts, power sets, sets of numbers, etc. In particular, ‘constructions’ are one of
the several kinds of definitions that can occur in a library. In contrast to other
definitions, a construction defines a set and its elements at the same time.

10



Figure 8: Omission of superset U from the union symbol.

A construction consists of one or more ‘constructors,’ each of which contains
its own parameter list, in addition to the parameter list of the entire construc-
tion. In general, it is written as follows:

construction parameters

construction :=:


constructor1 constructor1 parameters
constructor2 constructor2 parameters

...
...


For example, a construction with two arbitrary set parameters and a single con-
structor with two appropriate element parameters yields the Cartesian product
of the two sets:

Let S, T be sets. We define:

S × T :=:
{
pairS×T (s, t) s ∈ S, t ∈ T

}
The usual notation is obtained by omitting everything but the parentheses from
the pair constructor (see figure 9).

With appropriate rules concerning circularities, the set of natural numbers
can be defined easily using two constructors (see figure 10). Although the idea
is similar to inductive types in functional programming languages and proof
assistants based on type theory [3], the use of parameter lists makes constructors
more versatile. For example, to define power sets or sets of functions, one
merely needs to add a single constructor with a subset parameter (see figure 11).
Therefore, in contrast to existing type theories, functions do not need to have
any special status.

For constructors using element and subset parameters, two instances of the
same constructor can be considered equal if their arguments are. For arbitrary
set parameters, the sets given as arguments do not necessarily have the same

11



Figure 9: Definition and custom rendering of Cartesian product.

type, and thus cannot be compared. A general solution is to let the user specify
when two instances should be equal, subject to the requirement of reflexivity,
symmetry, and transitivity. This is useful even if no arbitrary set parameters
are involved; for example when defining integers (see figure 12). With arbitrary
set parameters, it leads to some interesting constructions:

• A single arbitrary set parameter defines cardinal numbers (or equivalence
classes of cardinal numbers).

• A set with a well-order relation defines ordinal numbers.

• A set with a binary operation defines isomorphism classes of magmas.

• In general, it is possible to define all mathematical structures up to iso-
morphism.

Although the collections of such structures are usually not regarded as sets, in
this system there is no reason to treat them specially. Inconsistencies like the
Burali-Forti paradox can be avoided by prohibiting certain circular uses.

Thus, the objects obtained from the four different kinds of parameters corre-
spond very well to the structures used in everyday mathematics. (Due to some
details of the system beyond the scope of this paper, it is always possible to
work with structures up to isomorphism only.)

Every instance of a construction is regarded as a separate type. In particular,
natural numbers are separate from integers, which in turn are separate from
rationals, reals, etc. At first glance, this seems problematic because in ordinary
mathematics, every natural number is treated as an integer as well, and so
on. Upon further inspection, the property that e.g. no natural number can be
entered where an integer is expected (and vice versa) enables a novel ‘embedding’
feature. There is no need for strange hacks like in Mizar [18] or explicit casts
like in HOL [10]; instead the user can simply specify an embedded set when
defining a construction (see figure 12). Due to the aforementioned property that
instances of different constructions would normally be separate, no ambiguities
can arise. (In a more limited sense, the same feature would be possible in other
type theories as well.)

12



Figure 10: Definition of natural numbers.

3.3 Consistency

The issue of consistency matters especially because the formal system does not
obviously resemble any other existing system, and even admits some sets that
are considered problematic in mathematics. For a proof assistant, it is desirable
to achieve as much certainty as possible while being able to formalize essentially
all existing mathematics. According to Gödel’s second incompleteness theorem,
the system cannot formalize its own consistency proof if it is consistent, so it is
definitely impossible to achieve both goals at the same time (not that it would
otherwise be obvious how to achieve absolute certainty).

Nevertheless, a consistency proof of the system is possible within ordinary
mathematics. It works by constructing a (meta-level) truth predicate for propo-
sitions and proving soundness with respect to this predicate, and can be formal-
ized in Zermelo-Fraenkel set theory as well as some weaker systems. The most
special property of the proof is that it requires arbitrarily-but-finitely many it-
erations of the power set operation, which currently cannot be formalized in
the system because the rules concerning circularities are too strict. While it
is certainly possible to modify them to permit this construction, for practical
purposes it is sufficient to ignore the circularity rules in particular cases that
are easily shown to be non-circular.

I believe that such an “unconditional” consistency proof provides slightly
better security than one which relies on the consistency of another strong formal
system, as it does not use any principles beyond everyday mathematics.

4 Conclusions and Future Work

I have presented a proof assistant and underlying formal system designed to
capture mathematical practice as accurately as possible. Although it employs
set-theoretic language, it accepts exactly the formulae and terms that would be
considered meaningful in a given situation. This property significantly increases
user-friendliness in the GUI-based proof assistant because the rules of the formal
system map directly to the possible choices in graphical menus.

A crucial ingredient is that sets are built into the formal system in such

13



Figure 11: Definition of power set.

a way that they can implicitly act as types. Two sets have the same type if
they are syntactically declared to share a common superset. ‘Constructions’
introduce new types by defining sets along with their elements; they are general
enough to define Cartesian products, functions, numbers, and all mathematical
structures up to isomorphism.

The “up to isomorphism” part seems particularly intriguing because it pro-
vides a metamathematical characterization of ‘isomorphisms’ without having to
encode structures as categories or even specify what ‘morphisms’ are. Moreover,
since category theory ultimately deals with structures up to isomorphism, one
might expect the system to be especially well-suited for categorial reasoning.
For a start, defining the concept of a category is straightforward.

Alas, isomorphism classes of structures do not carry enough information to
define morphisms in a meaningful way, so categories of all sets, all groups, etc.
are not available. Although certain special categories can be defined, such as a
category of ordinals or of all subsets of a given set, a more complete formalization
of category theory will require some changes to the formal system (or to the
definition of a category).

This would not be the only desirable extension: In the current system, one
cannot even define the ordinal ε0 given the construction of ordinals as described
in section 3.2. Due to the non-circularity rules, a second construction of ordinals
would be needed, so that a subset of the ordinals defined in the first construction
could be used to define an ordinal in the second construction. Higher ordinals
would require even more constructions, so that a mechanism of “merging” these
constructions seems desirable. The same principles apply to categories of cate-
gories.

The system avoids the usual problems with undefinedness by allowing arbi-
trary constraints on definitions. For example, the simplest definition of the limit
of a sequence includes the constraint that the sequence is actually convergent.
However, in practice, the statement

lim
k→∞

ak = x

is actually meant to imply, not require, that a is convergent. Of course, one can

14



Figure 12: Definition of integers as superset of natural numbers.

simply write “a converges to x” instead, but it would be more convenient if the
constraint in the definition of a limit could be marked “implied.”

Moreover, I would like the formal system to be more modular, and in par-
ticular to accommodate both classical and constructive logic. The difference
between these would also have a non-obvious impact on the user interface. For
example, in the current classical setting, it is never necessary, and therefore not
possible, to enter a doubly negated formula.

Concerning the user interface, the widest gap at the moment is the lack of
automation even for very simple inferences. Most other proof assistants can
search for proofs automatically at least in special cases (for example by pro-
viding advanced tactics), and this is usually necessary to avoid an explosion of
extremely small inference steps. In a GUI, certain complex inferences can be
input more easily (e.g. substitution at specific places according to given theo-
rems), and certain recurring aspects (such as associativity and commutativity)
can be dealt with on a higher level, mitigating the lack of automation in some
cases. However, there remain a lot of small proofs, especially sub-proofs, that a
human would consider too trivial to even mention. To automate these, a proof
search should run in the background, and be updated whenever the user adds
a proof step, as well as when a new sub-proof is opened. As soon as the cur-
rent (sub-)proof can be finished automatically, the software should simply fill
in the result, so the user can continue at the next step that requires manual
interaction.

But above all, I would like the proof assistant to serve as a testing ground
for all user interface features that can potentially make the input of definitions
and theorems easier, faster, and more fun.

The current prototype is available at http://hlm.sourceforge.net/.

15

http://hlm.sourceforge.net/


References

[1] Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchi-
roli. User interaction with the Matita proof assistant. Journal of Automated
Reasoning, 39(2):109–139, 2007.

[2] Janet Bertot and Yves Bertot. CtCoq: A system presentation. In AMAST
’96: Proceedings of the 5th International Conference on Algebraic Method-
ology and Software Technology, volume 1101 of Lecture Notes in Computer
Science, pages 600–603. Springer-Verlag, 1996.

[3] Thierry Coquand and Peter Dybjer. Inductive definitions and type theory:
an introduction. In Proceedings of the 14th Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 880 of
Lecture Notes in Computer Science, pages 60–76. Springer-Verlag, 1994.

[4] Pierre Corbineau. A declarative language for the coq proof assistant. In
TYPES ’07: Proceedings of the 2007 international conference on Types for
proofs and programs, volume 4941 of Lecture Notes in Computer Science,
pages 69–84. Springer-Verlag, 2008.

[5] N.G. de Bruijn. On the roles of types in mathematics. In P. de Groote,
editor, The Curry-Howard isomorphism, pages 27–54, Louvain-la-Neuve,
Belgium, 1995. Academia-Erasme.

[6] Herman Geuvers. Proof assistants: history, ideas and future. Sadahana
Journal, 34:3–25, February 2009.

[7] Thomas C. Hales. Formal proof. Notices of the AMS, 55(11):1370–1380,
December 2008.

[8] John Harrison. A Mizar mode for HOL. In Joakim von Wright, Jim Grundy,
and John Harrison, editors, TPHOLs ’96: Proceedings of the 9th interna-
tional conference on Theorem proving in higher order logics, volume 1125 of
Lecture Notes in Computer Science, pages 203–220. Springer-Verlag, 1996.

[9] John Harrison. Floating-point verification. In John Fitzgerald, Ian J. Hayes,
and Andrzej Tarlecki, editors, FM 2005: Formal Methods, International
Symposium of Formal Methods Europe, Proceedings, volume 3582 of Lecture
Notes in Computer Science, pages 529–532. Springer-Verlag, 2005.

[10] John Harrison. HOL Light tutorial (for version 2.20). http://www.cl.cam.
ac.uk/users/jrh/hol-light/tutorial 220.pdf, December 2007.

[11] John Harrison. Formal proof – theory and practice. Notices of the AMS,
55(11):1395–1406, December 2008.

[12] Steven Kieffer, Jeremy Avigad, and Harvey Friedman. A language for math-
ematical knowledge management. In A. Grabowski and A. Naumowicz,
editors, Computer Reconstruction of the Body of Mathematics, volume 18
of Studies in Logic, Grammar and Rhetoric, pages 51–66, 2009.

16

http://www.cl.cam.ac.uk/users/jrh/hol-light/tutorial_220.pdf
http://www.cl.cam.ac.uk/users/jrh/hol-light/tutorial_220.pdf


[13] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles, pages 207–220. ACM, October
2009.

[14] Agnieszka Kozubek and Pawe l Urzyczyn. In the search of a naive type
theory. In TYPES ’07: Proceedings of the 2007 international conference on
Types for proofs and programs, volume 4941 of Lecture Notes in Computer
Science, pages 110–124. Springer-Verlag, 2008.

[15] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in
the calculus of constructions. In Proceedings of the 5th International Con-
ference on Mathematical Foundations of Programming Semantics, volume
442 of Lecture Notes in Computer Science, pages 209–228. Springer-Verlag,
1990.

[16] Jakub Sakowicz and Jacek Chrzaszcz. Papuq: a Coq assistant. In H. Geu-
vers and P. Courtieu, editors, Proceedings of PATE’07, pages 79–96, 2007.

[17] Markus Wenzel. Isar – a generic interpretative approach to readable for-
mal proof documents. In Yves Bertot, Gilles Dowek, André Hirschowitz,
C. Paulin, and Laurent Théry, editors, TPHOLs ’99: Proceedings of the
12th international conference on Theorem proving in higher order log-
ics, volume 1690 of Lecture Notes in Computer Science, pages 167–184.
Springer-Verlag, 1999.

[18] Freek Wiedijk. Mizar: An impression. http://www.cs.ru.nl/∼freek/mizar/
mizarintro.pdf, 1999.

[19] Freek Wiedijk. A proposed syntax for binders in Mizar. http://www.cs.ru.
nl/∼freek/mizar/binder.pdf, 2003.

[20] Freek Wiedijk. Mizar’s soft type system. In TPHOLs ’07: Proceedings
of the 20th international conference on Theorem proving in higher order
logics, volume 4732 of Lecture Notes in Computer Science, pages 383–399.
Springer-Verlag, 2007.

[21] Freek Wiedijk. The QED Manifesto revisited. Studies in Logic, Grammar
and Rhetoric, 10(23):121–133, 2007.

[22] Freek Wiedijk. A synthesis of the procedural and declarative proof styles
of interactive theorem proving. http://www.cs.ru.nl/∼freek/miz3/miz3.pdf,
2010.

[23] Sean Wilson, Jacques Fleuriot, and Alan Smaill. Inductive proof automa-
tion for Coq. In Yves Bertot, editor, Second Coq Workshop, 2010.

17

http://www.cs.ru.nl/~freek/mizar/mizarintro.pdf
http://www.cs.ru.nl/~freek/mizar/mizarintro.pdf
http://www.cs.ru.nl/~freek/mizar/binder.pdf
http://www.cs.ru.nl/~freek/mizar/binder.pdf
http://www.cs.ru.nl/~freek/miz3/miz3.pdf

	Introduction
	Related Work
	The Formal System
	Types
	Constructions
	Consistency

	Conclusions and Future Work

